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Fig. 1. We present MV2MV, a unified multi-view image to multi-view image translation framework, enabling various multi-view image translation tasks such
as super-resolution (top row), text-driven editing (2nd and 3rd rows), etc. Our method achieves high-quality results with fine details while maintaining view
consistency. More results can be seen in the accompanying video.
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Image translation has various applications in computer graphics and com-
puter vision, aiming to transfer images from one domain to another. Thanks
to the excellent generation capability of diffusion models, recent single-view
image translation methods achieve realistic results. However, directly apply-
ing diffusion models for multi-view image translation remains challenging
for twomajor obstacles: the need for paired training data and the limited view
consistency. To overcome the obstacles, we present a first unified multi-view
image to multi-view image translation framework based on diffusion models,
called MV2MV. Firstly, we propose a novel self-supervised training strategy
that exploits the success of off-the-shelf single-view image translators and
the 3D Gaussian Splatting (3DGS) technique to generate pseudo ground
truths as supervisory signals, leading to enhanced consistency and fine de-
tails. Additionally, we propose a latent multi-view consistency block, which
utilizes the latent-3DGS as the underlying 3D representation to facilitate
information exchange across multi-view images and inject 3D prior into the
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diffusion model to enforce consistency. Finally, our approach simultaneously
optimizes the diffusionmodel and 3DGS to achieve a better trade-off between
consistency and realism. Extensive experiments across various translation
tasks demonstrate that MV2MV outperforms task-specific specialists in both
quantitative and qualitative.

CCS Concepts: • Computing methodologies→ Computer vision; Image
manipulation; Rendering; Point-based models.

Additional Key Words and Phrases: Image Editing, Diffusion Models, Gauss-
ian Splatting
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1 INTRODUCTION
Image translation is a long-standing problem in computer graphics
and computer vision [Isola et al. 2017; Parmar et al. 2023], which
takes input images as the condition to output target images. Many
problems can be considered as image-to-image translation, which
transfers images from a source domain to a target domain while
preserving the content representations [Pang et al. 2021], includ-
ing super-resolution [Vavilala and Meyer 2021; Wang et al. 2020],
deblurring [Lee and Cho 2013; Zhang et al. 2022], denoising [Chen
et al. 2023a; Gu et al. 2024], editing [Brooks et al. 2023; Kawar et al.
2023], etc. Existing image translation methods usually focus on
single-view images. While these methods produce promising results
for single-view image processing in the respective tasks, they en-
counter difficulties when applied to multi-view image translation
tasks. This is because simply performing frame-by-frame image
translation poses 3D consistency issues that can lead to inconsistent
geometry and appearance across different views.

A popular strategy is to use Neural Radiance Fields (NeRF), which
is a continuous scene representation, to implement NeRF-to-NeRF
translation as a means of indirectly achieving multi-view transla-
tion, such as NeRF-SR [Wang et al. 2022], Deblur-NeRF [Ma et al.
2022], NAN [Pearl et al. 2022] and Instruct-NeRF2NeRF [Haque
et al. 2023], etc. However, these NeRF-based translation methods
suffer from the following limitations: (1) the rendering resolution,
which produces artifacts when the resolution diverges from those
seen during training; (2) the rendering quality, as the training and
rendering processes of NeRF inevitably result in information loss.

Recent diffusion models showcase formidable generative capabil-
ities in the field of 2D image processing, and a range of methods
have emerged to support versatile image translation [Parmar et al.
2023; Saharia et al. 2022; Zhang et al. 2023], which have achieved
impressive translation results. This motivates us to raise an intrigu-
ing question: can we conduct unified multi-view image translation
by leveraging diffusion models as well? Implementing multi-view
image translation directly on the image domain is able to take better
advantage of existing 2D generative priors, e.g., Stable Diffusion
[Rombach et al. 2022], to achieve more flexible processing and ob-
tain more realistic results. The challenges are two folds. The first
one is the need for paired training data. Supervised learning with
paired real-world data will greatly enhance the generalization abil-
ity of the model, which can effectively adapt to the complexity and
variability of real scenarios. It is notable that collecting real-world

high-quality/low-quality multi-view image pairs is often prohib-
itively expensive or unavailable. The second challenge is the dif-
ficulty of guaranteeing view consistency. The generative nature
of diffusion models results in diverse and inconsistent content be-
ing inevitably generated for different views when translating the
multi-view images individually.

To tackle the challenges above, we propose a unified multi-view
image to multi-view image translation framework, called MV2MV,
based on diffusion models for various multi-view image translation
tasks such as super-resolution, denoising, deblurring and text-driven
editing (see Fig. 1). Firstly, we introduce a novel self-supervised
training strategy, called Consistent and Adversarial Supervision
(CAS). Specifically, we first process multi-view images individually
using off-the-shelf single-view image translators to obtain a set of
high-quality outputs, and then feed them into 3D Gaussian Splat-
ting (3DGS) to average out the inconsistencies and yield consistent
outputs. These two outputs are regarded as pseudo ground truths
serving as supervisory signals, and consistent loss and adversarial
loss are introduced to effectively combine the advantages of the
two pseudo ground truths to ensure both consistency and realism.
Secondly, we propose a plug-in latent multi-view consistency block,
named LAConsistNet, to construct our view-consistent diffusion
model (VCDM). Specifically, the LAConsistNet block utilizes a latent-
3DGS as the underlying 3D representation to ensure information
exchange among multi-view images, thereby guaranteeing multi-
view consistency. Finally, we introduce a joint optimization strategy
by simultaneously training VCDM and 3DGS to ensure the consis-
tency of the details derived from the adversarial loss, resulting in a
better trade-off between consistency and realism.

To summarize, we provide the following contributions:

• A unified multi-view image to multi-view image translation
framework processed on the image domain for various trans-
lation tasks.
• A generative multi-view diffusion model that enables better
view consistency as well as high-quality detail.

As far as we know, our approach is the first unified framework for
view-consistent multi-view image to multi-view image translation
based on diffusion models. We conducted extensive experiments
in terms of both qualitatively and quantitatively to validate the
effectiveness of the proposed method. The experimental results have
shown the superiority of our method in various multi-view image
translation tasks, such as super-resolution, denoising, deblurring
and text-driven editing. Our method not only generates images with
richer details but also achieves remarkable improvements in view
consistency.

2 RELATED WORKS

2.1 Single-view Image Translation
Most of the existing researches focus on single-view image trans-
lation tasks. Early image translation methods [Chen et al. 2023c;
Iizuka et al. 2016; Li et al. 2023a,b] are typically reconstruction-
based, where network architectures are designed based on assumed
prior knowledge of image translation. While these methods may
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achieve impressive performance on specific datasets, their perfor-
mance significantly deteriorates in real-world scenarios due to lim-
ited generalizability. To solve this issue, generative priors for image
translation have been widely exploited in the form of generative
adversarial networks (GANs) [Goodfellow et al. 2014]. For example,
various models are developed for specific applications such as super-
resolution [Ledig et al. 2017], style transfer [Kwon and Ye 2022],
texture synthesis [Li and Wand 2016] and inpainting [Pathak et al.
2016]. In particular, Isola et al [Isola et al. 2017] propose a generic
solution for image-to-image translation, named Pix2Pix, which ex-
plored myriad image-to-image translation tasks using GANs. While
GANs are capable of generating more realistic perceptual details,
they are unstable in the training stage and often suffer from unnat-
ural visual artifacts.

Recently, Diffusion Model [Rombach et al. 2022; Song et al. 2020;
Zhang et al. 2023] has demonstrated significant advantages in im-
age translation tasks. For image super-resolution, DiffBIR [Lin et al.
2023] and StableSR [Wang et al. 2023b] leverage the generative abil-
ity of latent diffusion models to generate realistic images. CCSR
[Sun et al. 2023] proposes a non-uniform sampling and early trun-
cation strategy to improve the consistency of the generated content.
For image deblurring, HiDiff [Chen et al. 2024] performs Diffusion
Model in the latent space to generate a priori features for the deblur-
ring process to recover exquisite images. Subsequently, AutoDIR
[Jiang et al. 2023] establishes a unified framework with latent diffu-
sion capable of handling multiple image degradations through joint
training with various image restoration tasks. For image editing,
InstructPix2Pix [Brooks et al. 2023] stands out by efficiently editing
images following instructions, which leverages large pre-trained
models in the language and image domains [Brown et al. 2020] to
generate paired data for training.

2.2 NeRF-to-NeRF Translation
Single-view image translation methods cannot be directly applicable
to multi-view image scenes due to the inherent 3D consistency of
multi-view images. To address this problem, existing studies usually
rely on 3D implicit fields of NeRF to achieve multi-view image
translation indirectly through NeRF-to-NeRF translation.

For restoration tasks, several works [Chen et al. 2023b; Lee et al.
2023a,b; Wang et al. 2023c] have explored this task under specific
types of degradation. For example, NeRF-SR [Wang et al. 2022] pro-
poses a supersampling strategy that allows the rendering of a single
pixel to be influenced by multiple rays, gathering more information
for NeRF super-resolution. Deblur-NeRF [Ma et al. 2022] adopts an
analysis-by-synthesis approach to simulate the blurring process,
thereby making NeRF robust to blurry inputs. Dehazenerf [Li et al.
2023a] demonstrates successful multi-view haze removal using phys-
ically realistic terms that model atmospheric scattering. However,
those methods can only deal with specific types of degradation,
ignoring the generality of restoration. To overcome this limitation,
RaFE [Wu et al. 2024] introduces GANs for NeRF generation to
better accommodate the geometric and appearance inconsistencies
present, which can apply to various types of degradations.
For editing tasks, EditNeRF [Liu et al. 2021] enables shape and

appearance editing through learning the underlying part semantics.

Instruct-NeRF2NeRF [Haque et al. 2023] implements the editing
of NeRF using text instructions by editing 2D images individually
with iterative updates. However, the edited image lacks multi-view
consistency, making the method unstable and slow to converge.
Later, ViCA-NeRF [Dong and Wang 2024] introduces geometric and
learned regularization to explicitly propagate the editing informa-
tion across different views, thus ensuring multi-view consistency.
GenN2N [Liu et al. 2024] is a recent work that shares similarities
with our motivation. It performs editing in the 2D domain and ex-
tends 2D editing to the 3D NeRF space by learning a generative
model to depict the distribution of NeRF edits. However, in con-
trast to GenN2N, which focuses on NeRF-to-NeRF translation, our
MV2MV framework trains a VCDM model that directly operates
on multi-view images, enabling more flexible editing and leverag-
ing the powerful prior of diffusion models to achieve realistic and
resolution-unlimited results.

3 OVERVIEW
Given multi-view images, our goal is to achieve view-consistent
multi-view image translation tasks, including the restoration tasks
of super-resolution, denoising and deblurring (the top row of Fig. 1),
as well as text-driven editing tasks (the 2nd and 3rd rows of Fig. 1).

3.1 Overview
An overview of our approach is shown in Fig. 2. To circumvent the
requirements for ground truth images, we first propose a novel self-
supervised training strategy of CAS (Sec 4.1), which leverages the
knowledge from off-the-shelf single-view image translators well-
trained on large 2D image datasets. Specifically, we process the
multi-view images individually to generate high-quality translated
images, and then feed them into the 3DGS to obtain geometrically
consistent rendered images. Translated and rendered images are
regarded as pseudo ground truths that provide supervision for our
VCDM through consistent and adversarial loss. Secondly, the LACon-
sistNet utilizes a latent-3DGS as the underlying 3D representation
to enable information exchange across multi-view images, where
consistent feature maps are rendered by the latent-3DGS as input to
LAConsistNet and each block of LAConsistNet is plugged into the
corresponding decoder layer of the denoising UNet to enforce con-
sistency (Sec 4.2). Finally, we introduce a joint optimization strategy
that simultaneously trains VCDM and 3DGS to further enhance the
trade-off between consistency and realism (Sec 4.3).

3.2 Preliminary
3.2.1 Stable Diffusion. The Stable Diffusion model [Rombach et al.
2022] is the backbone of our method, which is a large-scale text-to-
image latent diffusion model. Diffusion models learn to generate
data samples by employing a denoising sequence that estimates the
score of the data distribution. To achieve better efficiency and stabi-
lized training, Stable Diffusion pretrains a variational autoencoder
(VAE) [Razavi et al. 2019] to compress an image x into a latent z.
Subsequently, the forward and reverse processes are performed in
the latent space. In the forward process, Gaussian noise ϵ (0, I ) with
variance βt ∈ (0, 1) is added to the encoded latent z to generate the
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Fig. 2. Overview of MV2MV. Given multi-view images (top left), we utilize the CAS strategy (right) to train the proposed VCDM (left), which exploits the
success of off-the-shelf single-view image translators and 3DGS to generate pseudo ground truths as supervisory signals. LAConsistNet (see details in Fig. 3)
utilizes a latent-3DGS as the underlying 3D representation to enable information exchange across multi-view images, ensuring 3D consistency. The joint
optimization strategy simultaneously optimizes VCDM and 3DGS to achieve a better trade-off between consistency and realism.

noisy latent at time t :

zt =
√
ᾱtz +

√
1 − ᾱtϵ (1)

where αt = 1 − βt and ᾱt =
∏t

i=1 αt . Then a denoising UNet ϵθ
is trained to predict the added noise of the reverse process. The
optimization of Stable Diffusion is specified as follows:

Lsd = Ez,t ,ϵ
[
∥ϵ − ϵθ (zt , t)∥

2
2
]

(2)

where t is uniformly sampled.

3.2.2 3D Gaussian Splatting. 3DGS [Kerbl et al. 2023] is an explicit
3D representation based on point clouds. It forgoes predicting den-
sity and color with neural networks, thus accelerating both training
and rendering processes. Specifically, a set of 3D Gaussians with
attributes of position p, rotation R, scale S , opacity o and Spheri-
cal Harmonic coefficients (SHs) is modelled to represent the scene.
When rendering an image, 3D Gaussians are projected into the 2D
plane by the following transformation:

Σ′ = JW ΣWT JT (3)

whereW denotes the world-to-camera transformation matrix, J is
the Jacobian of the affine approximation of the projective transforma-
tion and Σ = RSST RT is the covariance matrix. Next, a point-based
rendering approach [Kopanas et al. 2022] computes the color C of a
pixel by blending N ordered points overlapping the pixel:

C =
∑
i ∈N

ciσi

i−1∏
j=1

(
1 − σj

)
(4)

where σi is computed by the Gaussian multiplied with the opacity
oi and ci is the view-dependent color computed by SHs.

4 METHOD

4.1 Consistent and Adversarial Supervision
4.1.1 Pseudo Ground Truth Generation. Recently, the denoising dif-
fusion probabilistic model has achieved great success in 2D image
translation tasks due to its powerful prior knowledge and appear-
ance generation capabilities. Therefore, we propose a self-supervised
framework that leverages the success of existing diffusion-based
image translation methods [Brooks et al. 2023; Chen et al. 2024; Sun
et al. 2023] for generating pseudo ground truths as supervision sig-
nals to circumvent the requirements for ground truth images. While
pseudo ground truths can also be obtained using non-diffusionmeth-
ods, in practice, we prioritize methods with strong capabilities to
generate high-quality and realistic texture details. In this paper, we
employ several multi-view image translation tasks to demonstrate
the adaptability of MV2MV: super-resolution, denoising, deblurring,
and text-driven editing.
Given the source multi-view image set {I i }N−1

i=0 , we first per-
form an existing image translator to produce a set of translated
images {hi }N−1

i=0 . Next, we use these images to directly optimize the
3DGS in order to enforce the production of geometrically consistent
results {x i }N−1

i=0 . Due to the generative nature of the image transla-
tor, {hi }N−1

i=0 exhibits significant multi-view inconsistency despite
its good quality, whereas {x i }N−1

i=0 demonstrates good consistency
but lacks clear details. These two results are regarded as pseudo
ground truths. And then, we focus on achieving generative results
that strike a balance between view consistency and high-quality
through the proposed supervision scheme. Specifically, we propose
the consistency loss and the adversarial loss to achieve these two
optimization objectives. The former ensures that VCDM generates
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multi-view consistent results but may lack clear details, while the
latter is employed to restore high-frequency details.

4.1.2 Consistent Loss. Given consistentmulti-view images {x i }N−1
i=0 ,

when training VCDM, we propose to directly minimize the discrep-
ancy between the estimated result and x i at each time step to ensure
consistency across the multi-view setting. Specifically, we randomly
select a timestep t and add noise to convert x i to the noisy state x it ,
and the consistent loss function Lconsist is:

Lconsist =
x i − x i0←t

2
2 (5)

where x̂ i0←t =
(
x it −
√

1 − ᾱtϵθ
(
x it , t

) )
is the generated image esti-

mated from predicted noise at timestep t . The consistent loss ensures
that VCDM generates multi-view consistent results.

4.1.3 Adversarial Loss. The geometric and appearance inconsisten-
cies among the {hi }N−1

i=0 preclude their direct use in supervising our
VCDM models. Consequently, we aim to restore the high-frequency
details by employing an adversarial training strategy. Previous re-
search demonstrates the effectiveness of adversarial training in pre-
venting blurred rendered images resulting from conflicts caused by
viewpoint inconsistencies during image supervision from different
viewpoints [Huang et al. 2020; Liu et al. 2024].

The denoising process plays a central role in the diffusion model,
while adversarial training is crucial in GANs. Recently, several ap-
proaches [Sauer et al. 2023; Sun et al. 2023; Xiao et al. 2021; Xie et al.
2024] have been proposed that aim to improve the diffusion process
through adversarial training. For example, CCSR [Sun et al. 2023]
employs adversarial training to fine-tune the VAE decoder to en-
hance details. Adversarial Diffusion Distillation (ADD) [Sauer et al.
2023] uses a combination of adversarial training and score distilla-
tion to significantly accelerate inference speed. Here, we propose
to combine the diffusion model and adversarial training to provide
fine-grained information for multi-view images, where additional
high-quality images can directly supply high-frequency priors for
the diffusion model during training.

Specifically, we propose to minimize the distribution discrepancy
between the VCDM result x̂ i0←t and the translated high-quality
image hi for supervising the parameters of the VCDM and discrimi-
nator. We adopt a saturate GAN loss with an image-level discrimi-
nator [Goodfellow et al. 2014]. The translated high-quality images
{hi }N−1

i=0 are treated as the real samples R, while the VCDM result
{x̂ i0←t }

N−1
i=0 are treated as the fake samples F. Thus, the adversarial

objective functions of the VCDM and the discriminator amounts to:

LGadv = ER[− logD(R)] + EF[− log(1 − D(F))]

LD
adv = EF[− log(D(F))]

(6)

Additionally, to introduce geometric-level constraints, we also incor-
porate perceptual loss to encourage the VCDM result x̂ i0←t to have
a geometry similar to that of the translated high-quality images hi :

Lдeo = LPIPS(hi , x̂ i0←t ) (7)

where LPIPS(·, ·) refers to the Learned Perceptual Image Patch Sim-
ilarity (LPIPS) [Zhang et al. 2018].

Text 
Encoder

Time 
Encoder

Prompt 𝑐𝑡

Encoder Block Ax3

Encoder Block Bx3

Decoder Block Ax3

Encoder Block Cx3

Encoder
Block Dx3

Middle Block

Decoder 
Block Dx3

Decoder Block Cx3

Decoder Block Bx3

Input 𝑥𝑡

Time 𝑡

Stable Diffusion

Encoder Block Ax3

Encoder Block Bx3

Encoder Block Cx3

Encoder
Block Dx3

Middle Block

Encoder Block Ax3

Encoder Block Bx3

Encoder Block Cx3

Encoder
Block Dx3

zero convolution

zero convolution

zero convolution

zero convolution

zero convolution

zero convolution

zero convolution

zero convolution

zero convolution
Middle Block

zero convolution

Condition feature map 𝑐𝑓

Output 𝜖𝜃 𝑥𝑡, 𝑡, 𝑐𝑡, 𝑐𝑓, 𝑐𝑔

Consistent feature map 𝑐𝑔

ControlNetLAConsistNet 

Fig. 3. Both LAConsistNet and ControlNet are integrated into the denoising
UNet of Stable Diffusion to enforce view-consistent image translation, which
corresponds to the dotted box in Fig. 2.

4.2 LAConsistNet Block
To explicitly enforcemulti-view geometric consistency in our VCDM
model, inspired by ConsistNet [Yang et al. 2023] and Syncdreamer
[Liu et al. 2023], we propose a plug-in module, called LAConsistNet,
to inject 3D prior as an additional condition into the blocks of the
neural network, see Fig. 3 (corresponds to the dotted box in Fig.
2). ConsistNet uses view aggregation and ray aggregation modules
to aggregate multi-view information, while SyncDreamer employs
a 3D-aware feature attention mechanism to synchronize features
across different views, all of which are based on an underlying 3D
spatial feature volume. Differently, we propose to utilize Latent-
3DGS as the underlying 3D representation modelling multi-view
geometry principles, which is superior in two aspects: (1) it is a
straightforward approach that can be directly initialized using the
pre-trained 3DGS from Section 4.1; (2) it is memory- and efficiency-
friendly, capable of handling large-scale scenes and applicable to
different multi-view image transformation tasks.
Our backbone network is built upon ControlNet [Zhang et al.

2023] and pre-trained Stable Diffusion [Rombach et al. 2022]. The
LAConsistNet is plugged into each encoder level of the denoising
UNet [Ronneberger et al. 2015] to enforce 3D consistency. Specifi-
cally, the denoising UNet comprises an encoder and a decoder, each
with 12 blocks and an intermediate block in between. Similar to
ControlNet, we create a trainable copy of the 12 encoder blocks and
1 intermediate block to stabilize the diffusion process, and append
the output to each decoder layer of UNet using zero convolution
layers, i.e., 1 × 1 zero-initialized convolution. However, unlike Con-
trolNet, which takes conditional images as input, our LAConsistNet
introduces consistency constraints by utilizing 3D consistent feature
maps rendered by Latent-3DGS.
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To achieve fast training on pre-trained Stable Diffusion, the train-
able structures of ControlNet and LAConsistNet are kept the same
as that in [Zhang et al. 2023]. Additionally, we utilize the pre-trained
3DGS from Section 4.1 to initialize the Latent-3DGS as the initial 3D
prior. Here, the latent features stored in 3D Gaussians are treated
as trainable parameters, while the other attributes are frozen. Our
Latent-3DGS, similar to Latent-NeRF [Metzer et al. 2023], serves
as the underlying representation of the 3D scene that ensures the
exchange of information between images from multiple viewpoints
to achieve 3D consistency.

4.3 Joint Optimization VCDM and 3DGS
In our framework, the LAConsistNet and the consistent loss are pro-
posed to ensure that VCDM generates multi-view consistent results,
while the adversarial loss is introduced to enhance the fine details.
However, the generation of details is accompanied by randomness,
leading to variations in the high-frequency details generated for
multi-view images, which adversely affect both training stability
and view consistency. This motivated us to propose a joint opti-
mization strategy that simultaneously optimizes VCDM and 3DGS,
leveraging the view-consistent properties of 3DGS to capture co-
herent details across views. Therefore, high-frequency details that
conform to view consistency constraints are retained, while inconsis-
tent high-frequency details are eliminated. The results produced by
3DGS is used as the guidance for the VCDM to generates multi-view
consistent fine details.

As shown in Fig. 2, the inference results {x̂ i0}
N−1
i=0 of VCDM with

the denoising diffusion implicit model (DDIM) [Song et al. 2020] are
used to optimize 3DGS. Subsequently, the rendering results {x i }N−1

i=0
of 3DGS are used to supervise VCDM by Eq.5, which forces the
VCDM to generate consistent high-frequency details. Following
[Kerbl et al. 2023], we optimize 3DGS with the loss functions below:

L3dдs = (1 − λ)
x̂ i0 − x i 1 + λ SSIM

(
x̂ i0, x

i
)

(8)

where SSIM(·, ·) refers to SSIM trem. It is worth noting that only
a few timesteps are used during the inference period to minimize
additional processing time. This approach is akin to a distillation
operation, significantly enhancing recovery results and inference
efficiency without compromising efficiency.

4.4 Inference
After the training stage, VCDM is capable of reasoning about high-
quality and 3D-consistent multi-view images based on the trans-
lation target. We employ the same inference period as in the joint
optimization process, ensuring consistency between training and
inference. Our approach significantly reduces the sampling steps
while maintaining satisfactory generation capabilities. In addition,
to further ensure the consistency of the generated content, we em-
ploy the Non-Uniform Timestep Sampling approach from CCSR
[Sun et al. 2023] to truncate the diffusion chain from xmin to xmax .
Specifically, we set tmin and tmax in all our experiments toT /3 and
2T /3 (T = 15).

5 EXPERIMENTS
The proposed MV2MV is a unified multi-view image to multi-view
image translation framework that supports various image transla-
tion tasks. In our experiments, we demonstrate the effectiveness
of MV2MV across a variety of tasks: super-resolution, denoising,
deblurring, and text-driven editing. Our framework simply replaces
different plug-and-play image translators to accomplish these tasks
without any additional design. To demonstrate the ability of guar-
anteeing view consistency, we use the results trained and rendered
by 3DGS for consistent and meaningful comparisons. An accompa-
nying video is provided for dynamic qualitative comparisons.

5.1 Datasets
We utilized a diverse range of datasets to evaluate the performance
of our model in different translation tasks. For super-resolution
and denoising tasks, we conduct experiments on a complex real-
world Mip-Nerf360 dataset [Barron et al. 2022], which contains
9 unbounded indoor and outdoor scenes. For the deblurring task,
we perform experiments on the real-motion-blur dataset provided
by Deblur-NeRF [Ma et al. 2022], comprising 10 real world scenes
with camera motion. For the text-driven editing task, we conduct
experiments on two forward-facing scenes of Face [Haque et al.
2023] and Fangzhou [Wang et al. 2023a], and the 360-degree scenes
of Garden [Barron et al. 2022].

5.2 Implementation Details
Our method is implemented by using the PyTorch framework. Fol-
lowing [Kerbl et al. 2023], we train the 3DGSmodel for 30K iterations
using the same Gaussian densification strategy. We utilize Stable
Diffusion v2.1 [Rombach et al. 2022] with ControlNet [Sun et al.
2023; Zhang et al. 2023] as the generative prior. Our VCDM is fine-
tuned for 2k iterations with a batch size of 1 and a learning rate of
1e−4 for each scene. The training phase takes about 2-3 hours on a
single NVIDIA A40 GPU (48GB).

5.3 Metrics
For quantitative experiments, we utilize both reference and non-
reference metrics to provide a comprehensive assessment for each
method. Since the generative characteristic of VCDM, the details
of results may not faithfully follow the ground truth. We employ
metrics that correlate well with human visual perception. LPIPS
[Zhang et al. 2018] and DISTS [Ding et al. 2020] serve as reference-
based measures to evaluate the perceptual quality of results with
respect to ground truths. NIQE [Zhang et al. 2015], MANIQA [Yang
et al. 2022], and MUSIQ [Ke et al. 2021] are non-reference image
quality assessment metrics designed to assess the fidelity of an im-
age, and are closer to human perception. To better evaluate the
performance of text-driven editing tasks, we also include CLIP Text
Image Directional Similarity [Haque et al. 2023] and CLIP Direction
Consistency [Pathak et al. 2016] as evaluation metrics, which mea-
sure the alignment of the performed edit with the text instruction
and the temporal consistency of the performed edit across views.
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Input Nerf-SR [Wang et al. 2022] SwinIR [Liang et al. 2021] StableSR [Wang et al. 2023b] MV2MV

Fig. 4. Qualitative results on super-resolution. Our method is able to generate more realistic and more sharper details. Please zoom in for a better visualization.

Input NAN [Pearl et al. 2022] DiffBIR [Lin et al. 2023] CCSR [Sun et al. 2023] MV2MV

Fig. 5. Qualitative results on denoising. Our method effectively removes noise while restoring detailed texture. Please zoom in for a better visualization.

Deblur-NeRF [Ma et al. 2022] Restormer [Zamir et al. 2022] HiDiff [Chen et al. 2024] MV2MVInput

Fig. 6. Qualitative results on deblurring. Our method removes motion blur and generates detailed textures. Please zoom in for a better visualization.

5.4 Quantitative Results
5.4.1 Super-resolution. On the Mip-Nerf360 dataset, we use the
image data downscaled by a factor of 8 as ground truths. In addition,
we generate low-resolution images using bicubic interpolation with

a scale factor of 4 to adapt to 4× super-resolution task. In this exper-
iment, CCSR [Sun et al. 2023] as the image translator is used in our
framework. We compare our MV2MV with several state-of-the-art
methods, including the NeRF-based method: NeRF-SR [Wang et al.
2022], and 2D image super-resolution methods: SwinIR [Liang et al.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2024.
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“Turn him into a clown”

“Turn him into Vincent VanGogh”

Input  Instruct-NeRF2NeRF [Haque et al. 2023] Instruct-GS2GS [Vachha And Haque 2024] MV2MV

“Make it snowy”

Fig. 7. Qualitative results on text-driven editing. Our method generates results that are more consistent and of better quality than previous state-of-the-art
methods.

Table 1. Quantitative comparisons on the super-resolution task. The best
result is highlighted in bold. Our method performs the best on non-reference
perceptual metrics.

Methods LPIPS↓ DISTS↓ NIQE↓ MANIQA↑ MUSIQ↑

NeRF-SR 0.370 0.205 4.192 0.428 39.346
Bicubic 0.358 0.216 5.808 0.279 26.946
SwinIR 0.404 0.230 5.813 0.351 30.546
BSRGAN 0.361 0.189 4.134 0.594 44.021
DiffBIR 0.393 0.212 3.754 0.571 40.485
CCSR 0.351 0.185 3.731 0.548 43.243
StableSR 0.340 0.173 3.565 0.621 49.241
MV2MV 0.358 0.188 3.401 0.707 58.385

Table 2. Quantitative results on denoising. The best result is highlighted in
bold. Our method achieves the best scores in MANIQA and MUSIQ.

Methods LPIPS↓ DISTS↓ NIQE↓ MANIQA↑ MUSIQ↑

NAN 0.350 0.224 3.013 0.563 49.121
SwinIR 0.478 0.280 6.676 0.422 34.314
CCSR 0.481 0.270 4.010 0.598 44.465
DiffBIR 0.468 0.264 4.436 0.620 44.029
MV2MV 0.466 0.262 3.858 0.726 60.092

2021], BSRGAN [Zhang et al. 2021], DiffBIR [Lin et al. 2023], CCSR
[Sun et al. 2023], StableSR [Wang et al. 2023b]. Bicubic interpolation
is included in our comparison as the baseline. Note that we use 2D
image super-resolution methods for per-view processing and direct
integration with 3DGS.

Table 3. Quantitative comparisons for deblurring. The best result is high-
lighted in bold. Our method performs the best on perceptual metrics.

Method NIQE↓ MANIQA↑ MUSIQ↑

DeblurNeRF 4.756 0.352 54.686
BAD-NeRF 7.191 0.271 30.699
Restormer 3.919 0.355 60.289
HiDiff 3.814 0.401 67.346
MV2MV 3.779 0.486 74.122

We show the quantitative results in Tab. 1. Due to the stronger
generation capability, MV2MV achieves the highest scores in NIQE,
MANIQA and MUSIQ compared to all baselines, indicating better
alignment with human visual perception. Furthermore, MV2MV
achieves comparable scores in terms of LPIPS and DISTS, which
demonstrate outstanding perceptual measures respect to ground
truths. The qualitative comparisons are shown in Fig. 4. While
diffusion-based methods of DiffBIR, CCSR and StableSR excel at
generating realistic details when processing images individually,
multi-view inconsistencies lead to reconstructions with varying
degrees of blurring. By contrast, our MV2MV is able to produce
view-consistent realistic details.

5.4.2 Denoising. On the Mip-Nerf360 dataset, we follow the noise
model used in [Mildenhall et al. 2018; Pearl et al. 2022] to obtain the
noisy images according to the equation: Inoise (p) ∼ N(I (p), δ2

r +

δ2
s I (p)), where p is an image coordinate, δr and δs are noise parame-
ter and N represents the Gaussian distribution. In our experiments,
we use the noise levels of 8 to get our noisy image and use CCSR
[Sun et al. 2023] as the image translator. We compare with state-
of-the-art methods of NAN [Pearl et al. 2022], SwinIR [Liang et al.
2021], DiffBIR [Lin et al. 2023] and CCSR [Sun et al. 2023].
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Table 4. Quantitative results on text-driven editing. The best result is highlighted in bold. Our method achieves the best performance.

Method CLIP Text-Image
Direction Similarity↑

CLIP
Direction Consistency ↑ NIQE↓ MANIQA↑ MUSIQ↑

Instruct-NeRF2NeRF 0.155 0.896 3.494 0.551 65.541
Instruct-GS2GS 0.149 0.941 5.163 0.344 42.327
MV2MV 0.174 0.944 3.403 0.629 70.369

The quantitative results are presented in Table 2. For the no-
reference metrics, MV2MV achieves the best scores in MANIQA
and MUSIQ, and the second-best scores in NIQE. In terms of refer-
ence metrics of LPIPS and DISTS, MV2MV maintains competitive
measures and is only slightly inferior to NAN. This is due to the
fact that the realistic details generated by diffusion-based methods
may not match well with the ground truth, thus putting them at
a disadvantage in reference metrics. Moreover, as shown in Fig. 5,
MV2MV produces sharper results with clear details compared to
other state-of-the-art methods.

5.4.3 Deblurring. For the deblurring task, we use HiDiff [Chen et al.
2024] as the image translator to recover high-quality images in our
framework. We compare the deblurring performance with Deblur-
NeRF [Ma et al. 2022], BAD-NeRF [Wang et al. 2023c] and single-
view image deblurring methods (Restormer [Zamir et al. 2022],
HiDiff [Chen et al. 2024]) combined with 3DGS. As the real-motion-
blur dataset does not provide sharp images, we only report non-
reference metrics in our experiment.
The quantitative results are shown in Table 3. MV2MV shows

consistently improved MANIQA, MUSIQ and CLIPIQA scores com-
pared to other methods, indicating that MV2MV is able to generate
perceptually more realistic details. The qualitative results are shown
in Fig. 6, demonstrating that MV2MV is more effective in removing
motion blur while preserving fine image details than other methods.

5.4.4 Text-driven Editing. We achieve text-driven editing by using
InstructPix2Pix [Brooks et al. 2023] as the image translator in our
framework. We mainly compare our MV2MV with two recent state-
of-the-art methods of Instruct-NeRF2NeRF [Haque et al. 2023] and
Instruct-GS2GS [Vachha and Haque 2024], which employ an iter-
ative updating mechanism to address a 3D inconsistency problem
among different edits.

Although editing is a subjective task, we report the quantitative
metrics of CLIP Text-Image Direction Similarity and CLIP Direction
Consistency according to Instruct-NeRF2NeRF [Haque et al. 2023].
In addition, we report the non-reference perceptual metrics to evalu-
ate the quality of text-driven editing results. Quantitative results are
presented in Table 4. Our MV2MV outperforms other methods on
all metrics, demonstrating its effectiveness in the text-driven editing
task. The qualitative comparisons are depicted in Fig. 7. Our method
generates more consistent and realistic results, while other methods
suffer from blurry results due to the blending of inconsistent editing.

5.5 Ablation Studies
We conduct ablation studies to demonstrate the effectiveness of each
component in MV2MV. Specifically, we test the following aspects

Table 5. Ablation studies on the proposed adversarial loss, LAConsistNet
and the joint optimization strategy (JOS). The best results are highlighted
in bold.

Methods NIQE↓ MANIQA↑ MUSIQ↑

w/o Adversarial Loss 4.376 0.497 44.244
w/o LAConsistNet 4.089 0.667 54.243
w/o JOS 3.592 0.682 56.271
MV2MV 3.401 0.707 58.385

of our model: the adversarial loss, the LAConsistNet block and the
joint optimization strategy based on the super-resolution task on
Mip-Nerf360 dataset. The quantitative results of the ablations are
depicted in Table 5. To ensure a fair comparison, all results are
rendered by 3DGS.

5.5.1 Effects of Consistent Loss. In our framework, VCDM requires
{x i }N−1

i=0 as the direct supervisory signal based on the consistency
loss, which cannot be removed. In fact, the direct outputs of the
2D image translator are the results obtained before applying the
consistency loss, which exhibit inconsistencies across views.

5.5.2 Effects of Adversarial Loss. In this ablation study, we examine
the influence of the adversarial loss, which is designed to guide
our model in restoring high-frequency details. As shown in Table
5 and Fig. 8, the lack of adversarial loss results in blurry rendered
images and leads to a significant decrease in perceptual metrics.
This blurring can be attributed to the absence of high-quality im-
age supervision. By incorporating the adversarial loss with the
pseudo ground truths, our model is able to successfully generate
the high-frequency details. For the discriminator, we follow the
proposed design in [Goodfellow et al. 2014]. It is worth noting that
different choices of discriminator networks may produce varying
high-frequency details, which we will explore more thoroughly in
future work. We believe that an improved discriminator network
design leads to enhanced visual outcomes.

5.5.3 Effects of LAConsistNet. We demonstrate the effectiveness
of the LAConsistNet block in guaranteeing view consistency, as
shown in Table 5. Removing the LAConsistNet block results in a
degradation of perceptual metrics due to the inconsistency of the
multi-view images. As demonstrated in Fig. 9, we also present the
results directly generated by VCDM. The introduction of the LA-
ConsistNet block significantly enhances view consistency, resulting
in high-quality rendering.
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w/o Adversarial LossInput w/o JOS Full

Fig. 8. Ablation of adversarial loss and joint optimization strategy (JOS).

w/o LAConsistNet Full

frame i frame i

frame i+1 frame i+1

Fig. 9. Ablation of the LAConsistNet block.

Training image

"Turn the bear into a pand"

InstructPix2Pix edit Result

Fig. 10. Failure cases. When InstructPix2Pix produces incorrect edits, our
method suffers from similar artifacts. Nevertheless, our method can still
maintain consistency.

5.5.4 Effects of Joint Optimization Strategy. We examine the influ-
ence of the joint optimization strategy by removing 3DGS during
training VCDM. Table 5 illustrates that all the metrics would have
worsened without the joint optimization strategy, demonstrating its

effectiveness in ensuring consistent and realistic detail generation.
This can also be observed in the qualitative results in Fig. 8.

6 CONCLUSION
We propose MV2MV, a unified multi-view to multi-view translation
framework that can handle various image translation tasks. Unlike
previous NeRF-based translation approaches, our framework is built
upon diffusion models and directly processes multi-view images in
the image domain, taking better advantage of existing 2D generative
priors to achieve more flexible processing and obtain more realistic
results. To address the challenges of requiring training data and
ensuring 3D consistency, we propose the consistent and adversarial
supervision strategy and the LAConsistNet block, which can achieve
high-quality and view-consistent results. Moreover, we introduce
a joint optimization strategy that simultaneously optimizes the
diffusion model and 3DGS to achieve a better trade-off between
consistency and realism. Our experiments demonstrate that MV2MV
outperforms existing state-of-the-art methods on various translation
tasks. Our method represents a feasible path for achieving complete
view-consistent multi-view translation.

Limitations and Future Work. Our method exhibits a couple of
limitations. Firstly, the framework of MV2MV relies on off-the-shelf
single-view image translators, thus naturally inheriting their limi-
tations. As illustrated in Fig. 10, our method cannot perform well
when InstructPix2Pix edits incorrectly. Previous methods also strug-
gled in these cases. Additionally, since all training images in the
editing task are edited only once by InstructPix2Pix, our method is
adversely affected by inconsistencies caused by challenging cases of
large viewpoint changes or dramatic changes with high uncertainty.
This limitation arises from constraints inherent to 2D translators.
With the fast development of the diffusion model, the choice of a
better 2D translator can substantially alleviate this limitation. As
an alternative, introducing additional 3D consistency constraints is
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also a good solution. For example, our framework can easily incor-
porate an iterative optimization strategy like Instruct-NeRF2NeRF
[Haque et al. 2023], allowing us to obtain a feasible 3DGS as our
initialization. We will try to solve this raised problem in the future.
On the other hand, thanks to this design, our method can theo-
retically be generalized to more image translation tasks by simply
replacing the off-the-shelf single-view image translator. Secondly,
although our model achieves an acceptable trade-off between real-
ism and consistency compared to previous diffusion-based methods,
it may not completely guarantee 3D consistency due to the nature
of probabilistic models. To completely guarantee 3D consistency, a
potential solution would be to introduce stronger spatial-temporal
constraints like SORA [OpenAI 2024] into MV2MV, thus allowing
all images to be processed simultaneously.
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